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Flow Analysis and Design Optimization Methods for
Nozzle Afterbody of a Hypersonic Vehicle

Oktay Baysal
Old Dominion University
Norfolk, Virginia

1. INTRODUCTION

The recent resurgence of interest in hypersonic aerodynamics has come about largely
in part due to the development of hypersonic vehicles, such as, the National Aerospace
Plane (NASP). The design of this type of aircraft will rely heavily on the use of
computational fluid dynamics, since the operating conditions prohibit the use of most of
the conventional experimental facilities to obtain the required data for design analysis.

One of the major design tasks involved in the development of a hypersonic air-
breathing aircraft is the integration of the engine and the airframe. This is necessary
in order to reduce excessive drag and weight due to the Mach numbers at which the
aircraft will be traveling. The high pressure combustion products are expanded through
the combustor exit nozzle and over the airframe afterbody configuration (Fig. 1). The
overall propulsive efficiency of the nozzle is determined, to a large extent, by the
exhaust plume flow over this afterbody section.

The design and testing of a scramjet nozzle-afterbody section using actual engine
combustion products is impractical in a conventional wind tunnel. The actual chemistry
and high total enthalpy levels of the exhaust products would be quite difficult to
match in a scaled test section. However, several alternatives do exist. A simulant
gas can be substituted for the actual combustion products, provided that dynamic and
thermodynamic similitude are enforced. Perhaps a more economical alternative would
be to do the preliminary design analysis using computational fluid dynamics (CFD).
Since there is currently very little experimental data for very high Mach number flows,
some means of calibrating and validating these CFD codes must be achieved before
they can be used with complete confidence in this design process.

In the 1970’s, a study was undertaken to develop an experimental cold gas simula-
tion technique for scramjet exhaust flows [1]. It was determined that in addition to the
usual nondimensional similitude parameter requirements for inviscid flows (i.e., Mach



numbers, pressure ratios, temperature ratios, etc.), that the ratio of specific heats (y)
of the combustion products must also be matched by the simulant gases. It was also
determined in this study that the surface pressures were relatively insensitive to small
changes in the thermodynamic properties of the gases, but were very sensitive to flow
perturbations caused by the nozzle geometry.

An extension of this work was carried out recently [2, 3]. A wind tunnel model
of a single-module scramjet nozzle-afterbody configuration was constructed for testing
(Fig. 2). The simulant gas mixture was fed into a high pressure plenum chamber via a
mounting strut. The gas in this plenum chamber was expanded through a converging-
diverging supersonic nozzle to approximately Mach 1.7 at the combustor exit plane,
where it was further expanded over the nozzle-afterbody section of the model. This
supersonic exhaust flow also encountered a hypersonic (Mach 6) freestream air flow,
through which mixing occurred in a free shear layer containing additional expansions
and shock waves. A removable tapered flow fence was used to simulate a quasi two-
dimensional flow. When this fence was removed, the nozzle flow also mixed with the
hypersonic freestream in the lateral direction through a spanwise expansion, causing the
flow to become fully three-dimensional. Experimental data was obtained for a scaled
scramjet nozzle-afterbody flowfield using both air and a Freon/Argon mixture as the
simulant gas. Static pressures were measured on the afterbody surface, for both two-
dimensional and three-dimensional flows, with various nozzle-afterbody geometries.
Also, by using a flow rake specifically designed for this purpose, the off-surface flow
was surveyed to obtain the pitot pressures. The data obtained from these experiments
were used to compare with the present computational results.

The design and analysis processes for this type of nozzle-afterbody section is
complex due to the fact that many additional parameters must be considered, in addition
to those which must be accounted for in conventional nozzles. This particular nozzle is
highly asymmetric, and consists of an internal and an external portion. The forces and
moments generated by most conventional nozzles can be determined by analyzing the
flow up to the nozzle exit plane only. In this particular case, the analysis must extend
further downstream due to the fact that the lower aft portion of the aircraft forms the
external portion of the nozzle. The flow over this afterbody region is expected to have
a dramatic effect on the thrust vector and pitching moment generated by the engine
module.

In the present study, a simplified configuration (Fig. 3) is assumed to model the
single-module scramjet nozzle-afterbody. A rectangular duct precedes the internal
nozzle. The external part of the nozzle is bounded by a ramp, a side ramp and a
vertical reflection plate. The external hypersonic flow is initially over a double-corner
formed by the reflection plate, the top surface of the nozzle, the exterior of the nozzle
sidewall, and a side flat plate. Both of the flows expand over the 20° ramp and the side



ramp. The supersonic jet expands in the axial, the normal, and the spanwise directions
after it clears the nozzle exit plane. A three-dimensional shear layer structure forms
between these coflowing turbulent streams which are at a different speeds.

In this chapter, the computational methods developed for the flow analysis and the
design of the aforementioned nozzle-afterbody are discussed. The three-dimensional
analysis method for the air-air (simulant gas is air) flow is given in the next section.
A two-dimensional, multispecies flow model is developed for the flow of Argon-Freon
mixing with air, which is explained in Section 3. The results of the flow analyses are
presented in Section 4. Further details of these flow analysis methods and the results
obtained using them may be found in [4-9]. The last two sections are dedicated to the
design optimization of the nozzle-afterbody. The methodology is described in Section
5 and some sample results are included in Section 6. More comprehensive discussion
of this design optimization method may be found in [10-13].

2. ANALYSIS METHOD FOR AIR-AIR FLOW

The conservative form of the nondimensional, unsteady, compressible, Reynolds-
averaged, complete Navier-Stokes equations are written below in generalized curvilinear
coordinates,

00 o .
T _ T -0 —_ 2.1
—8t+6§m(E E) =0, m=123 (2.1)
where
Q = [p, pu1, puz, pus, pe]” /J 2.2)

The symbols ¢, p, u;, e denote the time, the density, the Cartesian velocity components
and the total energy, respectively. The inviscid fluxes, viscous fluxes, and the coordinate
transformation jacobian are denoted by F, E,, and J, respectively. The state equations
are written assuming air to be a perfect gas. Molecular viscosity is calculated using the
Sutherland’s law and the Stoke’s hypothesis.

A finite volume differencing is formulated by integrating the conservation equations
over a stationary control volume,

%///Qdﬂ+//E-ﬁd§:0 2.3)

where 7 is the unit normal vector pointing outward from the surface S bounding
the volume (). This implicit and second-order accurate method is described in [14,
15]. The flux-difference splitting [1€] is used to construct the upwind differences for
the convective and pressure terms. Spatial derivatives are written conservatively as
flux balances across the cell. The Roe-averaged cell interface values of fluxes are
evaluated after a state variable interpolation where the primitive variables are used.



The diffusion terms are centrally differenced. Spatial approximate factorization and
Euler backward integration after linearization in time, result in the solution through
5x5 block-tridiagonal matrix inversions in each of the three directions.

The modeling of the stresses resulting from the Reynolds averaging of the governing
equations is complicated by the fact that several length scales exist which control the
generation, transport, and dissipation of turbulent kinetic energy. Therefore, the standard
two-layer algebraic turbulence model of Baldwin and Lomax [17] is modified and used
herein. It is based on the Boussinesq approximation of modeling the Reynolds stresses
by an eddy viscosity, . That is, the Reynolds stresses and heat fluxes are assumed
proportional to the laminar stress tensor with the coefficient of proportionality defined
as the eddy viscosity coefficient.

Three specific modifications have been made to the standard Baldwin-Lomax model
to account for: (a) vortex-boundary layer interaction and separation, (b) presence of
multiple walls, and (c) turbulent memory effects in addition to the local equilibrium for
the shear layer. The details of these modifications are given in [9].

The computational domain (11.1 in. by 8.1 in. by 6.6 in.) consists of the region
above the cowl and to the right of the side wall where the flow is hypersonic, and another
region bounded by the lower surface of the cowl and the ramp, where the supersonic
internal nozzle flow expands (Fig. 3). The global grid, which consists of 808,848 cells,
is block-structured with eight subdomains in order to ease the grid generation [8, 9]. The
grid lines are contiguous across the block interfaces, where the solutions are matched
with flux conservation. The step sizes normal to the wall vary in the range of 10~ to
10 with respect to the throat height. The grid is also longitudinally clustered around
the corners inside the nozzle, where the expansions occur. The step sizes for the shear
layer vary from 10~* to 10~ with respect to the ramp length in the (-direction.

The upstream boundaries for the external and internal regions require specifying
a viscous, double-corner flow (Fig. 4) profile and a viscous, duct (Fig. 5) profile,
respectively [8, 9]. Generating such profiles requires solving the three-dimensional
compressible Navier-Stokes equations. The boundary layer thickness of the final cross-
plane profile of the duct flow, which is used as the upstream boundary condition for the
nozzle, 1s approximately 0.072 in. on all four walls (Fig. 4). In addition to the boundary
layer growth on the walls and in the comer regions of the external double-corner, the
interaction of the two co-flowing hypersonic flows are computationally captured (Fig. 5).

No slip, impermeability, adiabatic, and zero-normal-gradient of pressure conditions
are imposed on all solid surfaces. First-order extrapolation for the conserved variables
are used at the downstream boundary. The outer boundary conditions are specified after



checking the sign of the normal contravariant velocity; extrapolation is used if the flow
is outward and freestream values are used if the flow is inward.

The solution is obtained on two coarser level grids, and finally the finest grid, in
an attempt to overcome the initial numerical transients. This approach is commonly
known as mesh sequencing [14]. The residual and the normal force histories are used to
determine the solution convergence. The convergence is deemed to be achieved when
the residual is decreased by four orders of magnitude. An examination of the normal
force coefficient, C'y, reveals an asymptotic approach to a constant value after 1500
work units. A work unit corresponds to the amount of iterations on any combination
of coarse or fine grids, which requires the same amount of computer time necessary to
perform one iteration on the finest grid [14]. The solution is terminated at approximately
2300 work units, in which 300 work units are performed on coarser levels. This amounts
to roughly 30 hours on the CRAY-2 of NASA Langley Research Center.

3. ANALYSIS METHOD FOR MULTISPECIES FLOW

This method requires solving more equations than the method for the air flow due
to the multispecies gases. Therefore, it is shown here in two-dimensions for brevity and
computational time savings. Extending it to three-dimensions is rather straightforward.

The conservation form of the two-dimensional, Reynolds-averaged Navier-Stokes
equations for unsteady, compressible flows of multispecies fluids is being solved. The
nondimensional indicial form (i and j are dummy indices) of these equations in the
Cartesian coordinates is given by

0Q OF; )
—_— — = M = .1
o Tax, % = h? G-
where
Q= [p,pu,:,pe,pfs]T; s=1,2,...,N—-1 (3.2)
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(3.3)
The mass fraction and pressure are denoted by f and p, respectively. N is the number
of species and indices r and s indicate species. The expressions for the shear stresses
and the heat flux are given as

L M Ou;  Ou; oui\
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Prandtl, Mach, and Reynolds numbers are denoted by Pr, M, and Re, respectively.
First and second viscosity coefficients are shown by x and A. T denotes the temperature
and subscript (t) denotes a turbulent quantity. C, is the specific heat. In the above
system, all the gases are assumed to be thermally perfect but calorically real gases.
Hence, the enthalpy (k) of each species (s), the total energy, and the pressure can be
expressed as:

T
o= ho+ / CpsdT (3.6)
e=hifi= P+ 5 (i) (3.7)
p=pRT (-ff—) (3.8)
Wg

The enthalpy of formation, universal gas constant, and molecular weight are denoted
by h°, R, and w, respectively. The terms DMT F; and DMTE; in Egs. (3.3) and (3.5)
account for the diffusive mass transfer. The expressions for these terms depend on the
utilized diffusion model. In case of using Fick’s law, these terms take the form

DMTF; = —pDaf . (3.9)
Ox;
N
dfs
DM ,:—E: hy=—2 1
MTE szlpD 7. (3.10)

The diffusion coefficient is denoted by D. When using a reduced form of the multicom-
ponent diffusion equation [18] derived from the complete kinetic theory to determine
the diffusion velocity components, these terms take the form

DMTF; = pityy fo6ry r=1,2... N (3.11)

N
DMTE; =) ph, fyiis (3.12)
s=1
The diffusion velocity components are denoted by @. The reduced form of the
multicomponent diffusion equation is

T

r=1

Vp

+ (fs — Xs) (3.13)
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and

_0.001858+/T3[(wr + ws) [ (wrws)]
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(3.14)

pafsﬂm
Eq. (3.13) is based on the assumptions that there is no thermal diffusion and that the

same body force per unit mass is acting upon each species. X, o, and ) denote the
species mole fraction, effective collision diameter, and collision integral, respectively.

Since for most turbulent mixing problems the Lewis number, which is the ratio of
the Prandtl and Schmidt (Sc) numbers, is approximately unity, the expression for the
effective diffusion coefficient is given by

pD = (Dm + i) (3.15)
Scy

In Eq. (3.15), D, can be found from Eq. (3.14) when using the multicomponent diffu-
sion model, or from the relation (pD,s = 1/ Sc) when using Fick’s law by specifying
the Schmidt number (Sc = 0.22).

To calculate the required thermodynamic quantities, the specific heat for each species
is defined by a fourth-order polynomial in temperature, whose coefficients are found by
a curve fit to the available data. The molecular viscosity and the thermal conductivity
coefficients for each species are computed from Sutherland’s formula. Their values for
a mixture of gases are determined from Wilke’s law as follows,

N N
n = Z Hs)(s/ ZXT¢TS (316)

s=1 =
r#s

where )
[+ o) (0 fr0)
VB [ + (wsfwr )]

Further details of determining the binary diffusion coefficients, Sutherland constants,
and the coefficients of the polynomials for the specific heat of each species are given
in [4, 5].

(3.17)

rs —

For a two-dimensional mixing flow of N species, there are (N — 1) species continuity
equations along with the global continuity equation, two momentum equations, and the
energy equation. The mass fraction of the Nth species, fy, can be found from the
following identity

N
S =1 (3.18)
s=1



Therefore, (V + 3) coupled partial differential equations [Eq. (3.1)] need to be solved
for the vector of conserved quantities [Eq. (3.2)]. However, in an attempt to compute
the global mass conservation error, the computations are repeated by solving N species
continuity equations, that is, a total of (N + 4) coupled equations.

The explicit MacCormack [19] algorithm is used to solve the governing equations.
The present implementation of this well-documented [20, 21] predictor-corrector scheme
is based on the finite difference discretization. The type of differencing is alternated
at every other time step for symmetric computations. The stress terms [Eq. (3.4)]
are differenced in the direction opposite to those of the fluxes. The scheme is only
conditionally stable and is second-order accurate both temporally and spatially. Fourth-
order damping terms are added for shock capturing.

The diffusion velocities V' are calculated using two different models, which are
the complete multicomponent diffusive interaction model, and the simple binary inter-
action model. In the binary model, mass diffusivities of all the species are assumed
identical, and only concentration gradient effects are included [Egs. (3.9) and (3.10)].
Whereas in the complete multicomponent model, the mass diffusivity of each species is
computed using Eq. (3.14). Then, the diffusion velocity of each species is determined
from Eq. (3.13), which requires solving (V) simultaneous algebraic equations for each
component of the velocity. It should be noted that for N species, however, the system
of N equations defined by Eq. (3.13) is not linearly independent. Therefore, one of the
equations must be replaced by the following constraint

N
> pfV=0 (3.19)
s=1

The resulting system of algebraic equations is solved using a lower-upper (LU) decom-
position method. When solving (N) species continuity equations, this model [Egs. (3.11-
3.14)] cannot be applied, because Egs. (3.18) and (3.19) can no longer be satisfied in
an exact manner due to the computational error.

The local mass error, LME, distribution due to the modeling of the multispecies
mixing is computed from the formula below, which is evaluated at every grid point

N
LME=p->"p, (3.20)

s=1

The global mass conservation error is also computed by numerically integrating the
mass along the computational domain boundaries.

The two-dimensional computational domain includes a region above the cowl where
the flow is hypersonic. The rest of the computational domain is bounded by the lower



surface of the cowl and the ramp, where the supersonic flow through the internal nozzle
expands (Fig. 6). This computational domain is selected to be (18.5 4 by 14 A), where h
is the throat height, and it corresponds to the longitudinal plane located at the half-span
of the internal nozzle (Fig. 3). The cowl and the ramp angles are 12 deg and 20 deg,
respectively. A fixed, boundary fitted grid is generated with appropriate clustering in
the regions where high-flow gradients are expected. The global grid, which consists
of 8,839 cells, is divided into four blocks. The grid lines are contiguous across the
block interfaces, where the solutions from each side of the interface are matched. In
the normal direction, the cowl separates blocks 1 and 2, and a horizontal line extending
from the cowl tip to the downstream separates blocks 3 and 4. In the streamwise
direction, the normal line at the cowl tip separates blocks 1 and 3, and blocks 2 and
4. This multiblock approach of domain decomposition alleviates the numerical errors
that might occur if the boundaries and the interior of the cowl were included in the
computational grids [4].

The governing equations are initially solved on this fixed grid until the global error
is reduced by about 2 orders of magnitude. Then the grid is adapted to the current local
flowfield solution using the two-dimensional spring-analogy approach of [22]. This grid
adaptation procedure enhances the solution by reducing the global error by another 2
orders of magnitude.

The adaptation is done as a sequence of one-dimensional operations. For example,
the operation starts in the ¢ direction by redistributing the grid points according to a
specified weighting function starting from the ¢ = 0 line to the { = (max line. Then
the process is repeated in the ¢ direction on the ¢ lines. The weighting function, in
the present study, is derived from the gradient of the composite function, [0.5 p + 0.3
u + 0.2 4], a specified minimum step size, and a specified maximum step size. The ¢
direction adaptations are performed separately for the region above the cowl (blocks 1
and 3) and the region below the cowl (blocks 2 and 4). The ¢ direction adaptations are
also performed separately, first for block 1, then for block 2, and finally for blocks 3 and
4 together. At the end, all these separate parts are blended together by the adaptations
applied only to the block interfaces. This practice ensures maintaining the original
shape of the cowl and the block interfaces. Further details of this flow-adaptive grid
scheme, including the necessary equations, are given in [22] and its implementation is
described in [5, 6].

4. RESULTS OF FLOWFIELD ANALYSES

The upstream conditions of the nozzle exhaust flow and the external flow are given
in Table 4.1. All of the flows are considered to be fully turbulent. Only case 1 assumes
the exhaust gases to be air. The cold gas simulating the exhaust gases is the Freon-
12-argon mixture for cases 2-5. Presented in Table 4.2 are the computational models
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for these cases. Only case 1 is computed both in two-dimensions and three-dimensions.
The computations for the other cases are in two-dimensions. Cases 1 and 5 assume
homogenous composition of the fluids everywhere and at all times. Therefore, the
species continuity equations and the terms representing the multispecies mixing are not
used for cases 1 and 5. Computed in cases 2—4 are the mixing of four species, namely,
nitrogen, oxygen, Freon-12, and argon. The diffusive mass transport model derived
from the complete kinetic theory is used in case 3, but the binary diffusion model is
used in cases 2 and 4. Only case 4 does not assume that the sum of mass ratios of
all the species is unity (Eq. 3.18).

The internal geometry for the supersonic nozzle features two corners — a lower
corner at the beginning of the ramp and an upper corner upstream of the cowl tip.
Two centered expansion fans develop around these corners. These two expansion fans
smoothly converge at the upper corner and then propagate out into the jet plume flow.
As the flow clears the internal nozzle-exit plane, two conditions can exist. When the
jet static pressure is greater than the external freestream static pressure, the jet flow
is underexpanded (Cases 1-4). When the static pressure of the jet is less than the
freestream static pressure, the jet flow is overexpanded (Case 5).

Table 4.1 Flow conditions at upstream of computational domain

Reynolds Total Total
Fluid (by Mach No. based  temp. pressure
Case Flow volume) No. on (h) (°K) (kPa)
1 Nozzle Air: 1.7 192,000 475 166.0
throat 79% N,
21% O,
2-5 Nozzle 50% 1.7 7500 467 1724
throat Freon-12
50%
Argon
1-4 External  Air: 6.0 346,000 478 2517.0
flow 79% N,
21% O,
5 External 50% 1.7 7500 467 172.4
flow Freon 12
50%

Argon
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Table 4.2 Computational mixing models

No. of partial
Specific heat differential
Multispecies ratio Diffusive mass equations
Case mass transport function of transport model solved
1 No Temperature — 4(2-D) or
5(3-D)
2 Yes Temperature, Egs. (3.9-3.10) 4+3
Composition
3 Yes Temperature, Egs. (3.11-3.14) 4+3
Composition
4 Yes Temperature, Egs. (3.9-3.10) 4+4
Composition
5 No Temperature — 4

4.1 Three-Dimensional Results:

The three-dimensional results obtained for Case 1 are shown in Figs. 7 through 11.
The pitot pressure contours for an —constant plane, located at 1.5 in. from the reflection
plate, are shown in Fig. 7. Just upstream of the cowl tip, a 0.53 in. thick boundary layer
is formed for the external flow. The supersonic-hypersonic mixing of air forms a shear
layer downstream of the cowl tip. This shear layer behaves like an extension of the cowl
and the flow continues to expand between the ramp and the shear layer. Two centered
expansion fans develop around the corners inside the nozzle. A small plume shock,
caused by the high-pressure expanding jet interacting with the low pressure external
flow, forms at the cowl tip and deflects downward at about -10°. This shock can induce
separation in the region of the cowl tip. The extent of this separation (when it exists) is
highly dependent on the plume shock strength. The jet also expands in the streamwise
direction. The flowfield along the ramp and side ramp contains expansion waves.

The same type of flow features are present in the spanwise direction and the jet
laterally expands out into the freestream. A shear layer develops between the high-
pressure, low-speed jet and the low-pressure, high-speed external flow. This leads to a
plume shock as the hypersonic external flow is slowed down by the expanded jet plume.
Shown in Fig. 8 are the Mach contours for a ¢-constant plane (approximately parallel
to the ramp at 0.3 in.) of the afterbody configuration, where the nozzle, the ramp, and
the side ramp are observed. The jet expands downstream of the nozzle, and the highly
expanded lateral jet plume is clearly seen. A much thicker boundary layer develops at
the side wall in comparison to the one seen in the normal direction. The higher-pressure
jet causes the external hypersonic flow, approaching the nozzle exit plane, to experience



12

a plume shock. As a result of the spanwise expansion of the jet and this plume shock,
a flow separation is started, and it propagates spanwise along the side ramp.

A more comprehensive view of the afterbody flowfield is shown through its
crossflow Mach contours in Fig. 9. Expansion is seen in normal, spanwise, and
streamwise directions. The growths of turbulent boundary layers on the reflection plate,
ramp, and side ramp are evident. The exiting jet transforms from a rectangular shape at
the nozzle exit plane to an enlarged elliptical plume as the flow propagates downstream.
Obviously, this affects the shape of the resulting three-dimensional shear layer.

Computational off-surface pitot pressure, Pp,, values are compared with the exper-
imental results [3] in Fig. 10. Four separate rake stations (Station 1 is located at the
nozzle exit plane), each containing 25 pitot tubes, are placed at midspan on the ramp.
Here, (L) denotes the length of the rake measured approximately normal from the ramp
surface, and (s) denotes the tangential distance along the ramp surface, measured from
the 20° ramp corner. The numerical simulation of the shear layer is accomplished with
some deviations seen in the high peak values of Stations 2, 3 and 4 located at s=3.5 in,
4.54 in, and 5.54 in, respectively. According to the experimental results, a compression
wave forms at the cowl tip and extends to the third rake station at approximately —10°.
The effect of this shock is seen both experimentally and computationally in the low
peak values. Computational results follow the experimental trend for the shock with
some deviation in location and strength. Station 3 reveals the largest discrepancy.

Comparisons of the computational and experimental [2] surface pressure coefficients
on the ramp and side ramp are shown in Fig. 11. Pressure values are plotted at five
spanwise locations. The first three stations (located on the ramp), which are downstream
of the nozzle exit plane, exhibit high initial G, values before gradually declining as the
flow continues to expand down the ramp. The C, distributions on the side ramp (»n=3.50
in. and »=4.25 in.) are relatively constant and predict slightly lower Cp values than the
final G, value attained on the ramp. This is due to the greater spanwise expansion on the
side ramp. All of the computed C, values compare very well with their experimental
values.

Discrepancies between the computational and the experimental results can be
attributed mainly to the grid, the turbulence model, and the uncertainties associated
with the wind tunnel data. Some improvement is possible by using a more refined
initial grid followed by adapting the grid to the flow solution as it develops. Also, the
boundary layer thickness used at the upstream of the internal nozzle flow (0.072 in.)
is only assumed to be approximating the experiment, since boundary layer thicknesses
were not measured during the wind tunnel tests [2, 3].
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4.2 Two-Dimensional Results on Adaptive Grids

An overexpanded flow case is designed to check the solution method on adaptive
grids (case 5). The fluid is a mixture of 72% Freon-12 and 28% Argon, by mass
(46%-54%, by volume). This mixture is assumed to retain its composition uniformly
everywhere, thence the computations are for the constant specific heat ratio of v=1.214.
The converged solution is obtained on the second flow-adapted grid shown in Fig. 6b.
Shown in Fig. 12 are the Mach contours. The jet at the cowl tip plane is overexpanded,
which results in a shock, with a pressure ratio of 2.7, impinging on the ramp. A
separation bubble and a reflected weaker shock are observed. The interaction of the
internal and external flows is through two expansions which emanate from the cowl tip
region. The top expansion is a fan pointed upward with an included angle of about 55°.
The lower expansion is directed inward interacting with the reflected shock towards the
downstream, where the ratio of pressure to that of throat is 0.3. A small separation
zone is also detected at the upper cowl tip.

In the remainder of this section, the multispecies flow computations, i.e. cases 2-4,
will be discussed. Shown in Fig. 13 is a representative flow adaptive grid used for these
cases. Presented in Fig. 14 are the computed and experimentally measured [2] pressure
distributions on the ramp surface. All pressures are normalized with the pertinent
pressure values at the upstream corner. The rate of expansion of airflow (case 1) is
much higher than that of Freon-argon mixture (cases 2-4) at the corner. The difference
between the expansion rates gradually decreases, but the pressure ratios of Freon-argon
mixture are consistently higher than those of air. The computed pressure values from
cases 2-4 are very close to each other. In comparison with the experimental data,
they are initially slightly lower, then slightly higher. The computed values of surface
pressures for the air expansion (case 1) are also slightly lower than the experimental
values, but they match almost identically down the ramp.

In an attempt to assess the error associated with the assumption that the sum of
computationally obtained species mass ratios is unity (Eq. 3.18), the mass deficits of
cases 2 and 4 are computed (Fig. 15). The mass deficit is defined herein as the difference
between the numerically integrated outflux and influx of mass through the boundaries
of the computational domain. The solutions of cases 2 and 4 show convergence in
about 4000 iterations (pseudo-time steps). The mass deficit is less than 1% for case
2, where the sum of the mass ratios is assumed to be unity. This is a commonly
used assumption in similar mixing, multispecies computations, such as [20]. When
this assumption is not made, and consequently four species continuity equations are
solved for four species (case 4), the mass deficit is about 8%. A further analysis is
performed in order to find multispecies mixing (Eq. 3.20) and the results are plotted in
Fig. 16. This error, of course, is identically zero for the other cases. This mass error is
occurring, as expected, within the shear layer, where the mixing takes place. It grows
in the downstream direction to a maximum of 1%.
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The contours of the specific heat ratio () are plotted in Fig. 17. It varies throughout
the flowfield as a function of temperature and local gas composition. In case 1, however,
the variation of v is only due to temperature. The values of + change in the streamwise
direction and the normal direction, with the large gradients being in the shear-layer and
boundary-layer regions. Effects of the diffusive mass transport models can be observed
by comparing Figs. 17a and 17b. The model derived from the complete kinetic theory
(case 3), produces smoother shear layer and boundary layers. The binary model (cases
2 and 4), produces more oscillations, with quantitative results varying by about 2%.
These oscillations exist despite the apparent converged solution of case 2 as indicated
by an examination of Fig. 15. Therefore, the extra computational cost of the model used
in case 3 may be justified if better accuracy and oscillation-free solutions are desired.
It should be pointed out that the flows under consideration are turbulent, high-speed
flows. The differences in the results from these two models are expected to be more
pronounced for laminar, low-speed flows.

The mass fraction contours for Freon-12 and nitrogen are shown in Fig. 18. The
fluid composition at the edges of the shear layer is slightly different from its upstream
mixtures. There is a very large gradient of mixture composition through the shear
layer. Some Freon-12 and argon mixture is entrained upstream with the reversed flow
on the upper surface of the cowl. When Figs. 17 and 18 are inspected together, it is
observed that the major cause for the variation of + in the shear layer is the change in
the composition of the multispecies fluid. In other regions, such as near the walls, the
variation of -y is primarily due to temperature gradients.

5. AERODYNAMIC DESIGN OPTIMIZATION

In the previous sections, flow analysis methods and their results were presented.
These are prerequisites to a design process, which is explained in this section. As it will
become obvious, this process is relatively more expensive in terms of computations.
Therefore, it will be demonstrated only in two-dimensions and using the inviscid flow
equations for the air flow (Euler equations). Its extension to three-dimensional, viscous,
multispecies flows is straightforward, but computations are certainly more costly.

It is desired to determine the nozzle ramp shape which yields a maximum axial
thrust force coefficient, F, subject to constraints, G; (Fig. 19). There are a number of
ways to choose the design variables [12]. Two of them are presented here: surface grid
and Bezier polynomials [23]. Since the surface grid for the inviscid analysis contains
47 points from the corner to the tip of the ramp, and the local slope at each grid rather
than its coordinates are used as the design variables, the number of design variables
(NDV) is 47 for the first choice. For the second choice, six control points are chosen
for the Bezier polynomials. Hence, NDV is 6 for this option.
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Mathematically, it is required to get

max F(Q(Xp),Xp) (5.1)

subject to
G;(Q(Xp),Xp) <0, j=1,NCON (5.2)
X Divwer S XD < XDopper (5.3)

where NCON is the number of constraints, and @ is the vector of the conserved
variables of the fluid flow. Xp,,... and Xp, . are the lower and the upper bounds
of the design variables.

The component of the axial thrust force due to nozzle wall shape, F,;iq, is obtained
numerically by integrating the pressure, P, over the ramp and cowl surfaces. Then it
is normalized by the force associated with the inflow, which is parallel to the cowl
surface. For a constant inflow Mach number, My, the inflow force is centered at the
mid-point of the line segment kc and its value is

Finfiow = P (1 +yME) R (5.4)

where  is the throat (¢4) height and + is the ratio of the specific heats. By definition,
the axial thrust force coefficient, F, is given in [11] as,

Foria (flcl Pmml’dy) + (f:,: Pcowldy)
F=—== (5.5)
Finflow Finflow

This axial thrust force coefficient is subject to three physical constraints. The first
constraint requires that the static pressure at the ramp tip, £, reaches a percentage of
the free stream static pressure, P, such that maximum expansion over the ramp is
reached without any reverse flow. The second and third constraints require that the
static pressure at the cowl tip, Py, should be within specified limits of the free stream
static pressure, such that expansion waves emanating from the ramp initial expansion
do not induce any reverse flow on either the internal or external cowl surfaces.

In addition to the physical constraints stated above, there are geometrical constraints
on the configuration (Fig. 19). In order to maintain the total length of the aircraft as a
constant, the axial length of the ramp is fixed. Also, in order to maintain an acceptably
smooth aerodynamic surface shape, upper and lower limits are imposed on the local
surface coordinates, local slopes, and the Bezier control points relative to their neighbors.



16

This nonlinear, constrained optimization problem is solved using the modified
feasible directions method developed by Vanderplaats (Ref. 24). Given a set of initial
values for the design variables, the method first drives all the design variables into a
feasible design space, i.e., the space where none of the design constraints are violated.
Then the optimum design is methodically searched for within this space. This search is
controlled by search directions which are based on the objective function gradient and,
therefore, efficiently guides the succeeding calculations towards incrementally improved
designs. Since this optimization process requires many evaluations of the objective
function and constraints before an optimum design is reached, the process can be very
expensive if a CFD analysis were performed for each evaluation. In the present study,
however, the higher fidelity flow prediction method (approximate flow analysis), which
is explained in Section 5.2, is performed during the one-dimensional searches of the
optimization process. A complete CFD analysis is performed only when new gradients
of the constraints and the objective function are needed, i.e. when the design changes
substantially. A flowchart of this overall design process is presented in Fig. 20.

5.1 Sensitivity Coefficients

The derivatives of the objective function, F, and constraints, G;, with respect to the
design variables, X' p, are defined as the sensitivity coefficients,

_dFF OF ar\T 8@
vr= =t (30) 7% G0
dG;  8G;  [aG\T 8Q
vG, = S 2 1 =1, NCON 5.7
'TdXp T 9Xp (8Q> ox, - hNCO G-D

These derivatives have been determined in Ref. 10 for a case with two design
variables (the inclination angles of the flat ramp and cowl surfaces to the horizontal) and
three constraint functions using two approaches; namely, the finite difference approach
and the quasi-analytical or sensitivity analysis approach. The sensitivity analysis can
be performed by one of two methods; either the direct method or the adjoint variable
method (Fig. 21). It is reported in [10] that if the number of design variables (NDV) is
greater than the number of adjoint vectors (NCON+1), the adjoint variable method is
more efficient than the direct method. Since, in the present study, the number of design
variables, X p, (47 or 6) is greater than the number of adjoint vectors (NCON +1 = 4),
the adjoint variable method is selected to determine the sensitivity coefficients.

The governing equations for a two-dimensional, steady, compressible, inviscid flow
of an ideal gas with constant specific heat ratios written in the residual vector form are,

RQ(X0), Xp) = L+ % _ g (5.8)
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where f and ¢ are the flux Jacobians in generalized coordinates (£, ). These equations
can be obtained by eliminating all the viscous and the mass diffusion terms in the
Navier-Stokes equations for the multispecies flow given in Section 3. Equation (5.8)
may be solved by two different methods for the analysis and the simulation of the
flowfield. The first method is the approximately factored (AF) method (Eq. 2.4), which
is explained in Section 2 and in [14-16]. The second method is using the Newton’s
method [25] to solve Eq. (5.8) directly. As it will be discussed in Section 6, this direct
method is more efficient than the approximately factored method.

The sensitivity analysis approach [10] begins by differentiating Eq. (5.8) with
respect to the design variables to yield the sensitivity equation,

50555} = ~[o%
00|\ axp )~ |oXp

This equation is solved for {3Q/8Xp}. It should be noted that Eq. (5.9) needs
to be solved for each design variable, X p; however, the coefficient matrix [3R/ BQ]
needs to be factorized once and for all. The remaining partial derivatives in Egs. (5.6)
and (5.7) can be evaluated analytically using the equations of the objective function and
the constraints. The final step is determining the values of VF and VGj|.

=R, (5.9)

At this point, the adjoint variable method diverges from the direct method. First,
Eq. (5.9) is substituted into Eqs. (5.6) and (5.7). Then, the vectors of adjoint variables
(A1, Ag;) are defined to satisfy the following equations,

oF

JTh = —= 5.10
1= 50 (5.10)
< JG;
J;==2 j=1,NCON 5.11
TG JTh (5.11)
where JI = [BR/@Q]T. The adjoint variable method requires the solution of

Egs. (5.10) and (5.11) for the adjoint variable vectors, and then, upon substitution
into Egs. (5.6) and (5.7), yields the derivatives of F and (. It should be noticed that
Egs. (5.10) and (5.11) are independent of any differentiation with respect to X p; hence,
the vectors A; and A; remain the same for all the elements of the vectors Xp.

Various methods can be used to solve the rather large sets of algebraic equations
resulting from Eqgs. (5.9) or (5.10-5.11). Details and comparisons of these methods
(banded method, sparse method, iterative method, etc.) are given in [10-13].
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5.2 Flow Prediction Method

An approximate flow analysis method has been introduced in [10-13] to predict a
flowfield solution of a perturbed shape (X}, + AXp) using the flowfield solution of an
initially unperturbed shape (X})). This method is based on a Taylor series expansion
of the vector of conserved variables Q(X}, + AXp) about Q(X},) and requires the
substitution of Eq. (5.9) into the Taylor expansion:

OR(QXD). Xp) ]« _ _[OR(A(XD), X5)] »
30 AQ = — aXs AXp (5.12)
where
AQ=Q(X} +AXp) - Q(Xp) (5.13)

Equation (5.13) explicitly gives the changes in @ due to the changes in AXp. From
here on, the term prediction is used when the flowfield is predicted using Eq. (5.13), and
the term analysis is used when the complete governing equations (Eq. 5.8) are solved
with the CFD algorithms described in Sections 2 and 3.

The next logical step in the prediction method is to extend the idea of prediction
based on analysis to that of prediction based on prediction. Performing a parallel
operation to that of Eq. (5.12), we obtain a second level flowfield prediction analogous
to Eq. (5.13) by

Q(Xp+axp) + X)) = Q(Xp+ Xp)) +aQW (5.14)

where Q (X, + AX}{") is obtained by Eq. (5.13). It should be noted that 6Q/0Xp

in Eq. (5.14) is based on the predicted flowfield Q(X;) + AX},"). This procedure
allows flowfield solutions to be progressively “built up” from previous predictions; all
of which have the common genesis of a single initial CFD analysis solution. Thus,
a flowfield solution for a complex final shape may be obtained through incrementally
additive design variable perturbations. Otherwise, a grossly erroneous prediction is
produced if an equivalent single large perturbation is attempted.

Due to the truncation error of the first-order Taylor series, the flow prediction
is currently less accurate than the flow analysis. However, solving flowfield predic-
tion Eq. (5.12) costs only a small fraction of solving Eq. (5.8), since (9R/0Q) and
(0R/9Xp) are already assembled in solving the sensitivity equation (Eq. (5.9)). There-
fore, for relatively small values of AXp, significant time savings are realized at the
expense of some accuracy.
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5.3 Sensitivity of the Optimum Design

After the optimum design is obtained, it is desirable to determine the sensitivity
of the optimum design with respect to the problem parameters. Such information is
useful to perform trade-off analyses. For example, it may be wished to estimate what
effect a specified increase in the free stream Mach number has on the optimum thrust.
Mathematically, this requires the derivatives of the optimum values of the objective
function and the corresponding design variables with respect to the problem parameters.

The first-order sensitivity derivative method developed in [26] is adapted for the
present study. Presented in Fig. 22 is the flowchart of this process. The vector P
contains the problem parameters, which are held fixed during the optimization. Using
the superscript “op” to denote the optimum quantities, the dependence of F°P and G
on Xp and P can be written as

For = For(Q(X7(P), P), X (P), P) (5.15)
Ga = Ga(Q(XP(P), P), X2 (P), P) =0 (5.16)

where (7, is a vector containing only the active constraints at the constrained maximum.
A constraint becomes an active one when its value is zero. The total optimum sensitivity
derivative of the objective function with respect to a problem parameter P is obtained
using the chain rule of differentiation. Any perturbation of the parameter P about
its value at the initial optimum must be such that the originally active constraints
remain active. For this constrained optimization problem, the first-order optimality
conditions at a local optimum (commonly known as Kuhn-Tucker conditions [27]) are
used. Combining the equations for the gradient of the objective function and the active
constraints, and using the Kuhn-Tucker conditions result in,

<8F°” r 5T 0G\T
0Q 0Q
where ¥ is a vector containing the Lagrangian multipliers. The derivatives of the

conserved variables vector, ), with respect to the problem parameters are obtained
from the following relation,

dF°?  9F? 3G,
P~ ap TV ap

8—Q (5.17)

R(Q(Xp(P), P), Xp(P), P) =0 (5.18)

Differentiation of Eq. (5.18) with respect to the problem parameters and using Eq. (5.9)

results 1n,
OR] 0Q OR] _ -
[5@] P [513} = Ry .19)
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Solving Eq. (5.19), similar to Eq. (5.9), for (9Q/8P) and using it with Eq. (5.17) yields
the sensitivities of the objective function to the problem parameters.

Alternatively, the adjoint variable method can be used when_the substitution of
Eq. (5.19) into Eq. (5.17) is performed. Then, an adjoint vector ), that satisfies the
following equation, is defined

- [oFer oG, -
Ty = ~ 2. 5.20
=%+ (%)) 20
where J = [0R/0Q)]. Substitution of Eq. (5.20) into Egs. (5.17) and (5.19) gives,
QP OFP 190G,  p-
P - ap TV e tA (5.21)

The adjoint system of Eq. (5.20) is independent of any differentiation with respect
to the problem parameters. Also, both terms on the right hand side are available from
the calculations of Egs. (5.6) and (5.7). The partial derivatives, 9F°?/0P, 3G, /8P and
OR/OP can be evaluated analytically. Therefore, the sensitivity derivatives (Eq. (5.21))
are obtained after solving Eq. (5.20), evaluating the Lagrangian multipliers, and finally
performing the pertinent substitutions.

Since the number of problem parameters, P, (equal to seven for the present example)
is greater than the number of the adjoint vectors, A, (equal to one for the present
example), the adjoint variable method is more economical [10] for the present example.

6. RESULTS OF DESIGN OPTIMIZATION

Prior to discussing the actual optimization results, a series of cases (Cases 6—10) will
be presented to demonstrate the flow prediction method in Section 6.1. Subsequently, the
optimized nozzle-afterbody shape (Cases 6, 11, and 12) will be introduced in Section
6.2.

6.1 Demonstration of Flow Prediction Method

Initially, the governing equations of the flow are solved to obtain the analysis for
a flat ramp surface at «=10° (Case 6). Then the ramp is deflected in such a way that a
shock can be generated; a compression corner is formed at 38% length from the ramp
corner by turning the surface at an angle, 6, from the ramp surface (Fig. 23). CFD
analyses are performed for three values of §: 2.5°, 5.0°, and 10° (Case 7). Finally, the
flowfields for the above ¢ values are predicted (Case 8) using the analysis for the flat
ramp surface, that is, §=0°. In other words, the =0° configuration (Case 6) is denoted by
(X3,) in Egs. 5.12-5.14, and any one of the 6 # 0° configurations (Case 8) is denoted
by (X{) + AXI)). The flow of Case 6 over the ramp is free of shocks. However, flows
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containing compression shocks, due to ramp wall perturbation (8 # 0°), are predicted
based on the shock-free flow.

Table 6.1 Distinguishing Features of Flow Prediction Cases

Deflection
Case Angle, 0 Flowfield Solution Method
6 0° Analysis
7 2.5°,5°, 10° Analysis
8 2.5°,5°, 10° Prediction based
on analysis of §=0°
9 5° Prediction based
on analysis of #=2.5°
10 5° Prediction based
on prediction of §=2.5°

The pressure coefficient distributions along the ramp for the Cases 6, 7, and 8
are shown in Fig. 24. The analysis (Case 7) and the predicted (Case 8) results are
indistinguishable up to the compression corner. The compression corner shocks are also
predicted very well. As expected, discrepancies begin to appear for the larger 0 values,
i.e. larger design variable changes. Notice that a discontinuous physical phenomenon
(shock) is predicted based on a flow which does not have that phenomenon (shock-
free). The maximum deviation is only 2% for §=2.5°, but it increases to 22% for
0=10°. These deviations can be attributed to the nonlinear nature of the shock. This is
a typical trend when a nonlinear problem is solved using a method which includes some
kind of local linearization. Therefore, it can be positively concluded that the prediction
method, due to truncation error, exhibits increasing inaccuracies as the deflection size,
AXp, increases and eventually produces unacceptable solutions when the deflection
becomes too large.

An issue, which appeals to the curiosity is the success of the present prediction
method for the off-surface flow, particularly, when an existing change in a configuration
is enlarged; for example, predicting the flow for §=5° when the flow of §=2.5° is given.
Shown in Fig. 25 are three sets of density contours in comparison: the flow analysis of
9=2.5°, the flow predictions of #=5.0° based on first the flow analysis of §=2.5° (Case
9) and then the flow predictions of §=2.5° (Case 10). Two points are noteworthy here.
First, Case 9 aims at predicting the flow due to an enlarged change (¢ from 2.5° to
5.0°), but not predicting a new physical phenomenon; that is, the prediction method
is given a shock with which it begins. The comparison of this case with the analysis
is satisfactory, despite the fact that the shock is rather strong. Secondly, this figure



22

illustrates the feasibility and quality of the second level prediction of Eq. 5.14. For
example, the prediction of #=5° flowfield (Case 10) is based on the Case 8 prediction
for =2.5°, which is based on Case 6 analysis. Since the truncation error occurs twice
and progressively during this process, although associated with smaller perturbations,
the agreement of Case 10 is slightly less successful than that of Case 9. Therefore,
it may be concluded that higher level predictions may be further used for coarse but
efficient estimates of highly perturbed shapes.

6.2 Shape Optimization of Nozzle-Afterbody

Three different and arbitrary shapes are chosen as the initial design shapes for the
ramp; namely, a flat ramp surface at a=10° (Case 6), a concave surface with its axis
(the straight line connecting the corner point and the ramp endpoint) at «=25.7° (Case
11), and a convex surface with its axis at «=29.5° (Case 12). The slope of initial
ramp expansion 1s 35.0° for the concave shape and 23.5° for the convex shape. The
reason for starting the optimization from three different initial shapes is to determine
how close the resulting optimized ramp shapes are to each other. Ideally, they should
be identical irrespective of their initial shape, so that, the designer using this method
in the production mode can start with any shape that is convenient. Shown in Fig.
26 is the comparison of the optimum shapes of Cases 6, 11, and 12 along with their
initial shapes. The optimum shapes are almost identical for 70% of the surface and
show a small difference towards the tip. When the axis angles, a, of the optimum
shapes are compared, it can be seen that the difference between Cases 11 and 12 is
indistinguishable (less than 0.3%) and that of Case 6 differs from them by only 3%.

The effect of the shape optimization on the interior flowfield is just as pronounced
as it is on the surface properties. The Mach number contours of both initial and
optimum configurations of Case 6 are presented in Fig. 27. The expansion patterns are
significantly different. The rate of expansion is much higher inside the nozzle for the
optimum shape, which results in a higher Mach number and less underexpanded jet at
the nozzle exit plane. The consequence of this is evidenced in the shear layer, which
is thinner and has a smaller angle with the horizontal for the optimum shape. Also, the
expansion along the external part of the nozzle ramp is no longer predominantly in the
streamwise direction, but a significant portion is in the normal direction. This indicates
that cancellation of the cowl corner centered-expansion waves occurs at the optimized
ramp surface, which is a characteristic feature of bell-type nozzles.

Plotted in Fig. 28 are the histories of the objective functions, F, during the
optimization iterations (or commonly known as levels). The initial F value of Case
11 is the highest, and all three shapes converge to an optimum F value within 14
optimization iterations. Cases 6 and 12 have identical optimum F values to the fourth
significant digit, and that of Case 11 differs from them by less than 0.5%.



23

The computational time for each one of the shape optimization cases is about 3.5
hours on the CRAY-YMP of Numerical Aerodynamic Simulation (NAS) of NASA.
For example, Case 6 requires 180 evaluations of the objective function over the course
of 14 optimization iterations. At the end of each iteration, there is a CFD analysis
accompanied with the objective function evaluation for the new improved shape. This
means that CFD analysis is performed 14 times, whereas, the flow prediction calculation
is performed 166 times. Comparing the computational times of an analysis (~ 175
seconds) and a prediction (~ 18 seconds), it can easily be realized that the aerodynamic
optimization procedure is more efficient by employing the present prediction method.

To demonstrate the relative efficiencies of the present design optimization methods,
Case 11 is solved using five different procedures and their results are given in Table 6.2.
In Procedure 1, the sensitivity coefficients, VF and VG, are computed by the traditional
finite-difference method. In contrast, they are computed by the sensitivity analysis (SA)
approach in the rest of the procedures, i.e. Procedures 2-5. The design variables in
Procedures 1-3 are the local slopes at each surface grid point (47 of them), but they
are the Bezier control points (6 of them) in Procedures 4 and 5. The third important
difference between the procedures is the method to solve the flow equations; all but
the last procedure employ the traditional approximate factorization (AF) method and
the last procedure solves these equations directly using the Newton’s method. Finally,
Procedures 3, 4, and 5 employ the flow prediction method, but Procedures 1 and 2 use
the complete CFD analyses only.

The most efficient method is Procedure 5 and it requires 2.2 hours of computing on
the CRAY-2 computer of NASA Langley Research Center. The most time is required
by Procedure 1, which uses all the traditional methods. The memory requirement
is of the same order of magnitude for all procedures. Part of the reasons for such
disparity in computational efficiencies may easily be understood by inspecting the last
two columns of Table 6.2. It is noteworthy to point out that Procedure 2 requires less
CFD analyses than Procedure 1. This is due to the values of the sensitivity coefficients,
which are obtained much more accurately when the sensitivity analysis approach is
used. Consequently, the optimizer provides a converged solution much quicker. Further
details of such efficiency considerations are given in [10-13].



Table 6.2 Normalized Computational Times Required
by Different Aerodynamic Optimization Procedures

Normalized No. of
Execution Required No. of CFD  Approx. Flow
Optimization Procedure Time Memorey [MW]* Analyses Analyses
1) AF+slopes+FD 49.2 6.1 595 0
2) AF+slopes+SA 19.7 6.1 236 0
3) AF+slopes+SA 3.75 6.1 6 230
4) AF+Bezier+SA 2.04 54 15 172
5) Newton’s+Bezier+SA 1.00° 54 15 172

AF: Approximate Factorization

FD: Finite Difference for sensitivity

SA: Sensitivity Analysis for sensitivity coefficients
2 grid size (41x53)
b cpu time = 2.2 hrs on Cray2
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(Moc)ing = 1.665

81x65x41 GRID 1

Figure 4 Mach number contours of the flow inside the rectangular duct preceding the
internal nozzle (Case 1).

(Mecjext = 6.0

97x65x41 GRID 1
97x25x41 GRID 2

97x25x41 GRID 3

Figure 5 Mach number contours of the external flow past the double corner preceding
the cowl and the external nozzle (Case 1).
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Figure 7 Pitot pressure contours in the internal nozzle and ramp region for an M-
constant plane (Case 1).

4.7
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Figure 8 Mach contours for an {-constant plane of the nozzle-afterbody (Case 1).
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Figure 10 Comparisons of computational and experimental [3] off-surface pitot pres-
sure (Case 1).
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Figure 11 Comparisons of computational and experimental [2] surface pressure coef-
ficients (Case 1).
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MACH CONTOURS MIN VALUE= 0.0000 MAX:-  2.9525 (a,

(b)

MACH CONTOURS MIN VALUE= 0.0000 MAX= 2.9733

Figure 12 Mach number contours of Case 5 where the flow is overexpanded: (a)
solution on the fixed grid shown in Fig. €a, (b) solution on the adapted grid
shown in Fig. 6b.
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L i i haadion X0 S |

LOCAL MASS ERROR CONTOURS
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No. of Iteration

Figure 15 Global mass conservation error for Cases 2 and 4.

MAX: 0.01 MIN:0.001 DEL: 0.001

Figure 16 Local mass error due to mixing of species (Case 4).
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(a)
GAMMA CONTOURS

MAX: 1.40 MIN: 1.18 DEL: 0015
CASE 2

(b)
GAMMA CONTOURS ~ MAX: 1.4 MIN: 1.18 DEL. 0.01

CASE 3

Figure 17 Contours of specific heat ratio: (a) Case 2, (b) Case 3.
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(a)

FR-12 MASS FRACTION CONTOURS

MAX = 0.751 MIN = 0.1 DEL = 0.1

(b)

N2 MASS FRACTION CONTOUTRS

MAX = 0.766 MIN = 0.1 DEL = 0.1

CASE 3

Figure 18 Mass fraction contours of Case 3: (a) Freon-12, (b) Nitrogen.
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Aerodynamic Shape Optimization Flowchart

Initial Design Variables X )

Problem Parameters r

Evaluate
F » Gj's

> Optimizer (ADS)

}

YES

Optimum ?

Iiew YD
( = initial X p in first pass )

Approximate Flow
Analysis

Isita
one-dimensional
Search ?

YES

Flow Analysis (CFD)
(YUMXZ3)

[

Computing the
Sensitivity of
the Optimum_
Design w.r.t.P

Computing Sensitivity
Coefficients(Gradients)

VF, VGj

using Sensitivity Analysis
Approach

Figure 20 Flowchart of the aerodynamic shape optimization method.



44

‘(ssurAnisuas uoneziwndo

-oxd) spoyow ([eoudeue-isenb) sisjeue ANAnIsuas 9yl Jo URYIMO[

mi

| Noon-=r ~|ozl pef=f

.qU A ‘anduo)

(De/foe)="ty (De/de) |g— |

EINTIN

_ d A*andwo) _

~

(Oe/de) ="'y (De/de)
[0S

1

ibm\mson_hcﬁah

siskjeuy Mol

AOHIIW ATdVIdVA LNIOIAV " 1I

1T am3rg
.ﬁ»
AQN =! oN [+1=1
.ﬁ»
NOON=[ [ 5] L+r=r

r -

_.U A ‘andwio]) €

i

=1

t

A A¢andwo)

A

JAI0S

dXesdge-= 9xe/de(de/ye)

nxun—x

sisjeuy molg

AOHLAN LO=Ia -

I




45

Assemble
R AF° 909G, OR 0F° 090G,

R JF°%® 939G,
dXp 9Xp oXp

Factorize( 9R /9 Q )T

!

Compute sensitivity coefficients
VFE® ,VG,
using sensitivity analysis approarch

!

Compute the Lagrangian Multipliers ,y
v=-[(vG)"(vG)]|" (vG,)" vEer

Y

' Solve
ar\" - (aF°P aE,_j
—= A= —+t—— VY
29Q 9Q 9Q
Compute
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dar apr apP opP

Figure 22 Flowchart of the adjoint variable method to determine the sensitivity deriva-
tives (post-optimization sensitivities).
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Axial Thrust Coefficient = 0.1157 W

1.665 1.8 N

Flat Initial Ramp Shape (a)

33/

Axial Thrust Coefficient = 0.1524 D/

1.665 18 p

(b)

Optimized Ramp Shape

Figure 27 (a) Mach contours of the initial ramp shape (Case 6).
(b) Mach contours of the optimized ramp shape (Case 6).
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